Better Value with Risk Control

Lisa Goldberg, PhD
Pete Hand
Ran Leshem

- The Russell 1000 Value Index lagged the Russell 1000 Index by more than 100 percentage points over the 10-year period ended June 30, 2020.

- Underweights in the five FAAMGs—Facebook, Amazon, Apple, Microsoft, and Google—explained more than 3/5 of the lag.

- Optimized Value delivered Value\(^1\) exposure over the same period while controlling forecast tracking error to the Russell 1000 Index.

- Risk control led to strong FAAMG representation in Optimized Value and better performance.

“We saw that the expected returns or anticipated returns rule is inadequate. Let us now consider the expected returns–variance of returns (E-V) rule.”

—Harry Markowitz
“Portfolio Selection” (1952)

The Russell 1000 Value Index lagged the Russell 1000 Index by more than 100 percentage points over the 10-year period ending in June 2020.

Despite this dismal performance, some asset managers contend that “rumors of Value’s death may be premature,” emphasizing their belief that fundamentals play an important role in future stock returns and pointing to a distinguished library of research dating back to Benjamin Graham and David Dodd’s 1934 treatise, *Security Analysis*. Still, 10 years can feel like a long time when you’re behind, and beleaguered investors ask, “When will Value be back?” While it is not possible to answer that question, a return attribution provides insight into recent underperformance.

---

\(^1\) Value” is a term of art that refers to a broad collection of investment strategies that typically depend on financial ratios such as book-to-price and earnings yield.
Rank-and-chop portfolio construction explains the lag.

A simple way to create a Value portfolio is to underweight or chop out securities that rank low on book-to-price, earnings yield, and other indicators. A version of this rank-and-chop methodology, popularized by Eugene Fama and Kenneth French in the 1990s and used by many asset managers today, is the basis of the Russell 1000 Value Index. Between July 2010 and June 2020, fast-growing Facebook, Amazon, Apple, Microsoft, and Google (FAAMG) were ranked and mostly chopped out of the Russell 1000 Value Index, accounting for more than 3/5 of the 100-percentage point-plus lag.

![Figure 1: Contributions to active return of the Russell 1000 Value Index versus the Russell 1000 Index by FAAMG stocks over the period July 2010–June 2020.](image)

Optimization achieves a targeted Value exposure while controlling risk.

Rank-and-chop portfolio construction neglects the “V” in Markowitz’s E-V rule by failing to control risk. We investigated the impact of risk control on Value in 2016, when the Russell 1000 Value Index was down by 20 percentage points over the preceding decade and some Value investors were already questioning their conviction. We found that Optimized Value, which tilted toward book-to-price and earnings yield while minimizing forecast tracking error to the benchmark, achieved the same Value exposure as rank-and-chop Value with less than half the tracking error between 1991 and 2014.

---

2 “Rank and chop” is a neologism for a commonly used portfolio construction methodology that ranks securities by an indicator and chops out securities whose ranks fall below a prescribed threshold.


4 Optimized Value is a hypothetical, long-only, monthly rebalanced strategy that minimizes tracking error to the Russell 1000 Index subject to these constraints: earnings yield = b + 0.40, book-to-price = b + 0.40. Portfolio construction used the Barra US Total Market Equity Model for Long-Term Investors and the Barra optimizer.
We update our 2016 study with a comparison between the Russell 1000 Value Index and Optimized Value over the 10-year period ended in June 2020. Average book-to-price exposures of the Russell 1000 Value Index and Optimized Value were similar over this period, as shown in Table 1, while Optimized Value had a substantially larger earnings yield exposure.\(^5\) At the same time, tracking error for Optimized Value was less than half the tracking error of the Russell 1000 Value Index.\(^6\)

<table>
<thead>
<tr>
<th></th>
<th>Book-to-Price</th>
<th>Earnings Yield</th>
<th>Tracking Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Russell 1000 Value Index</td>
<td>0.46</td>
<td>0.17</td>
<td>3.25%</td>
</tr>
<tr>
<td>Optimized Value</td>
<td>0.40</td>
<td>0.38</td>
<td>1.52%</td>
</tr>
</tbody>
</table>

Table 1: Average active exposure (z-score) and realized tracking error of two Value indicators in the Russell 1000 Value Index and a hypothetical strategy, Optimized Value, relative to the Russell 1000 Index over the period July 2010–June 2020.

Figure 2 shows cumulative active return of the Russell 1000 Value Index and Optimized Value, relative to the Russell 1000 Index. While substantial, the underperformance of Optimized Value was relatively recent, and it was dwarfed by the underperformance of the Russell 1000 Value Index.

\(^5\) An explanation for the relatively low active earnings yield exposure of the Russell 1000 Value Index may be that the index construction methodology does not rely on earnings yield.

\(^6\) We calibrated the hypothetical Optimized Value strategy featured in this article to be consistent with Aperio’s current investment process so that both book-to-price and earnings yield exposures were set to \(b + 0.40\) in our optimizations. This led to realized average exposures of \(b + 0.40\) and \(b + 0.38\), respectively, between July 2010 and June 2020 (as shown in Table 1) that closely matched the targets. Differences between these exposures and the average Russell 1000 Value exposures of \(b + 0.46\) and \(b + 0.17\) imply that our comparison between the Russell 1000 Value Index and Optimized Value was not as evenhanded as possible. A hypothetical Optimized Value strategy calibrated to match average Russell 1000 Value Index average active exposures of book-to-price and earnings yield over the period July 2010–June 2020 generated an active return of \(-0.90\)% against the Russell 1000 Index, with a realized tracking error of 1.08%.
Figure 2: Cumulative active return to the Russell 1000 Value Index and a hypothetical strategy, Optimized Value, relative to the Russell 1000 Index, July 2010–June 2020.

To a great extent, the performance difference between Optimized Value and the Russell 1000 Value Index was explained by FAAMG weights. As shown in Figure 3, average FAAMG weights were relatively close in Optimized Value and the Russell 1000 Index, while FAAMGS were nearly absent from the Russell 1000 Value Index. Risk control allowed Optimized Value to hold on to FAAMGs while meeting Value targets.
Risk control is an essential element of all Aperio strategies.

When will Value be back? The distinguished library of research on Value investing and its support from practitioners may inspire confidence, but it does not answer this question. What we can say is that Optimized Value, a strategy that is distinguished by the incorporation of the “V” in Harry Markowitz’s E-V rule, effectively tracked a diversified benchmark in the past. Risk control is old but timeless, and it will remain an essential element of all Aperio strategies as we move forward into an unknowable future.
Disclosures

The information contained within this paper was carefully compiled from sources Aperio believes to be reliable, but we cannot guarantee accuracy. We provide this information with the understanding that we are not engaged in rendering legal, accounting, or tax services. In particular, none of the examples should be considered advice tailored to the needs of any specific investor. We recommend that all investors seek out the services of competent professionals in any of the aforementioned areas.

With respect to the description of any investment strategies, simulations, or investment recommendations, we cannot provide any assurances that they will perform as expected and as described in our materials. Past performance is not indicative of future results. Every investment program has the potential for loss as well as gain.

Due to the complexity of tax law, not every single taxpayer will face the situations described herein exactly as calculated or stated; i.e., the examples and calculations are intended to be representative of some but not all taxpayers. Since each investor’s situation may be different in terms of income tax, estate tax, and asset allocation, there may be situations in which the recommendations would not apply. Please discuss any individual situation with tax and investment advisors first before proceeding. Taxpayers paying lower tax rates than those assumed or without taxable income would earn smaller tax benefits from tax-advantaged indexing or even none at all compared to those described.

The performance information shown above is model performance reflecting the retroactive application of a model with the benefit of hindsight and not based on any actual client account or composite performance. The results and analysis do not reflect the results of actual trading and are not guarantees of future results because they are derived from mathematical modeling techniques of the economic and financial markets that may or may not reflect actual conditions and events. This performance information is provided for informational purposes only and should not be considered a recommendation to buy or sell any securities or investment advice. The assumptions and projections displayed are estimates, hypothetical in nature, and meant to serve solely as a guideline and should not be considered an indication of actual performance. In constructing and implementing the model, Aperio has not taken into account the investment objectives, financial situation, or particular needs of any individual investor. Model portfolio information presented, including, but not limited to, objectives, allocations and portfolio characteristics, is intended to provide a general example of the potential implementation of the strategy and no representation is being made that any client account will or is likely to achieve profits or losses similar to those shown. In fact, there are frequently sharp differences between hypothetical performance results and the actual results subsequently achieved by any particular trading program. One of the limitations of hypothetical performance results is that they are generally prepared with the benefit of hindsight. In addition, simulated trading does not involve financial risk, and no simulated trading record can completely account for the impact of financial risk in actual trading. For example, the ability to withstand losses or to adhere to a particular trading program in spite of trading losses are material points which can also adversely affect actual trading results. There are numerous other factors related to the markets in general or to the implementation of any specific trading program, which cannot be fully accounted for in the preparation of hypothetical performance results, and all of which can adversely affect actual trading results. Because there are no actual trading results to compare to the hypothetical, back-tested performance results, clients should be particularly wary of placing undue reliance on these hypothetical results. Perspectives, opinions and testing data may change without notice. Detailed back-tested data is available upon request. No security, discipline or process is profitable all of the time. There is always the possibility of loss of investment.

The optimization process used in tax-loss harvesting by Aperio relies upon an optimization model built and designed by MSCI Barra. The model utilizes a mathematical objective function which seeks to minimize the combination of active risk (i.e., forecast tracking error), and the tax liability on realized gains, all while also meeting the conditions presented by a series of simultaneous equations, the values of which are, in part, populated by data based upon the securities being analyzed. With respect to measuring potential equity risk in the process of tax loss harvesting and portfolio analysis, Aperio also uses and relies upon MSCI Barra risk models. You should note that such use and reliance of the MSCI Barra models in the optimization and equity risk analysis presents model risk, which is defined as the potential for adverse consequences from decisions based on incorrect or misused model.

The model may have fundamental errors and may produce inaccurate outputs when viewed against the design objective and intended business uses. The mathematical calculation and quantification exercise underlying any model generally involves application of theory, choice of sample design and numerical routines, selection of inputs and estimation, and implementation in information systems. Errors can occur at any point from design through implementation. In addition, shortcuts, simplifications, or approximations used to manage complicated problems could compromise the integrity and reliability of outputs from those calculations. Finally, the quality of model outputs depends on the quality of input data and assumptions, and errors in inputs or incorrect assumptions will lead to inaccurate outputs. The model may be used incorrectly or inappropriately. Even a fundamentally sound model producing accurate outputs consistent with the design objective of the model may exhibit high model risk if it is misapplied or misused. Models by their nature are simplifications of reality, and real-world events may prove those simplifications inappropriate.

Aperio’s strategies are not in any way connected to or sponsored, endorsed, sold, or promoted by the London Stock Exchange Group plc and its group undertakings (collectively, the “LSE Group”). All rights in the Russell indexes vest in the relevant LSE Group company. The LSE Group does not accept any liability whatsoever to any person arising out of the use of the strategies or the underlying data.